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ABSTRACT

An arbitrary nonlinear system with input a Gaussian process, which is
such that its output process has finite second moments, admits two kinds of
representations; the first in terms of a sequence of deterministic kernels
and the second in terms of a single stochastic kernel. We consider here the
identification of the sequence of deterministic kernels from the input and
output processes, the representation of the system output when its input is
a sample function of the Gaussian process, and the relationship of the se-
quence of kernels mentioned above .to the Volterra expansion.kernels when
the system has a Volterra representation.

1. STOCHASTIC AND MULTIPLE WIENER INTEGRALS
FOR GAUSSIAN PROCESSES '

Let us first introduce our basic notation and terminology. We will
consider throughout a zero mean Gaussian process X = (Xt, teT) with covar-

iance function R(t,s), defined on a probability space (2,B,P). T will be an

_ interval of the real line. B is usually taken to be B(X), the o-field gen-

erated by the process X, or B(X), the completion of B(X). There are two
important Hilbert spaces associated to a Gaussian process. The nonlinear
space of X, LZ(X) = LZ(Q,B(X),P), consists of all B(X)-measurable random var-

iables with finite second moment which are called (nonlinear) Lz—functionals
of X. The linear space of X, H(X), is the closed subspace of L2(X] spanned

by xt, teT, and its elements are called linear Lz—functionals_of X.

The first useful notion in the study of the nonlinear space of a Wiener -
process is the Multiple Wiener Integral. This notion was first introduced
by Wiener (1938), who termed it '""Polynomial Chaos,'" and was redefined in a
somewhat deeper way by It6 (1951). Itd showed that his multiple integrals
of different degree have the important property of being mutually orthogonal
and also presented their connection with the celebrated Eourier-Hermite ex-
pansion of L, -functionals of Cameron and Martin (1947). In his important

work on nonlinear problems Wiener (1958) reinterpreted the multiple Wiener
integrals for a Wiener process in an extremely simple and intuitive way and
made some interesting applications.

In [4] multiple Wiener integrals of the following .two types are defined
for general Gaussian processes:

Ip(fp) = [eoof f(tl,...,tp)dxtl...dxt .
. : P
I () = [eoe] f(tl,...,'cp)xtl...xtp dt,...dt, (
where p = 1,2,..., and we always write [ for IT' We always assume that = : ¥ f(
Xf\‘= 0 a.s. for some toeT when dealing with integrals Ip’ and that X is °© e E;f
0\» o > \4.‘

mean Square continuous when dealing with integrals Jp' s 4
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The 1ntcgrands f(t ,+.+»t ) belong to appropriate Hilbert spaces of —
"“functions" defined on Tp, which are denoted by A (@pR) for Ip’ and A (@ll)
for J . For instance AZ(R) is the completion of the set of all functxons
f(t) on T which are such that the Riemann integral R/Sf(t)f(s) R(t,s)dt ds
exists and is finite with respect to the inner product

<f,g> = RISE(t)£(s) R(t,s)dt ds .

When T = [a,b], A,(R) contains all square integrable functions over T, as
well as further interesting classes of functions (see [4]), but also "func-
tions'" with properties similar to those of delta functions. A (@PR) is de-

fined similarly, and is isomorphic to the tensor product :19) (R) under the
natural correspondence.

The multigle Wiener integrals Jp, p=1,2,..., have the following proper-
ties (f,gckz(@ R) and a,b real numbers):

Jp(af+bg) aJp(f) + bJp(g) 5

I5fE) =l (80 5

<J (), > = pi<F g> ;

where f is the symmetric version of f,

<J (£),J (q)>L2£x) =0 ifp#gq, | /‘?'
891 ~ 9Py
I (0, -89 ) = le(f¢1(t)xtdt)...Hpk(f¢k(t)xtdt) 3

where et are orthonormal in A,(R), ...+ = p, H_denote the Her-
¢, & 2(R)5 Py P =P Hy

mite polynomials, and ® denotes symmetric tensor product.

Also every Lz-functional 0 of X, BeLZ(X), has an orthogonal development

= E(0) + Z J (f )
P= =1 P

where fpekz(e R), and if

6 - E(0) = Z Jo(f) = 1 3,05
p=1 pzl Vi s

then £ =g, p=1,2,... .
en £ = g, p=1,2, :

The second useful notion in the study of the nonlinear space of a Wiener
process is the stochastic integral. The stochastic integral was first intro-
duced by Itd (1944) for the Wiener process and later generalized by Meyer
for martingales. Every Lp-functional of a Wiener process has a representa-
tion as a stochastic integral, where the 1ntegrand is adapted to the
Wiener process.




TN,

In [4] a stochastic integral
I(f) = [£(t)ax,

is defined for LZ(X)-valued "functions" f(t) belonging to the Hilbert space

A )(R), which is defined in a way similar to AZ(R) and is isomorphic to

2;L,(X
HE
the tensor product A2(R)8L2(X) under the correspondence ¢§ <—>¢8¢&, ¢5A2(R),

EeLZ(X). The stochastic integral

I: AZ;LZ(X)(R) > L, (X)

is an unbounded densely defined closed linear map with range the set of all
zero mean random variables in L;(X) (for further properties and some evalu-

ations of the stochastic integral see [4]). Thus every L,-functional 6 of X,
eeLz(X), admits the representation

0 = E(0) + [ £(t)dxX,

for some (non-unique) feAz_L (X)(R) in the domain of I, and f may be taken to
22

be adapted to X ("'adapted to'" meaning '"measurable with respect to the past
of""). Notice that as shown in [4], the stochastic integral becomes norm
preserving when restricted to nonanticipatory integrands, but it is not yet
known which Ly-functionals admit nonanticipatory stochastic integral repre-
sentations (''nonanticipatory'" meaning 'independent of the future increments
of X").

2. NONLINEAR SYSTEMS WITH GAUSSIAN INPUTS

Let 6 be a nonlinear system with input the Gaussian process X = {Xt,teT}
and output the process Y = {Yt,teT} (the parameter sets of the input and

output processes could of course be distinct). The only assumption we make
on the nonlinear system without further notice is that it is such that the
process Y is of second order, i.e. each Y, is an Lj-functional of X. Then

from Section 1, we have two representations of the system 6 for the input X.
The first is a series representation in terms of multiple Wiener integrals

(-]
Y, = E(Y) + g [oee] £ (5t t)Xy X dey..dty (¢))
p=1 1 P
where fp(t;-)eAz(GpR) may (and will from now on) be taken to be symmetric.

The second is a stochastic integral representation

Y, = E(Y,) ¢+ / £(t;s)X ds : (2)

where f(t;°)eA (R) may be taken to be adapted to X. Thus the system

2;L2(X)

0 can be represented for the input X either by the sequence of deterministic
kernels fp(t;tl,...,tp), p=1,2,..., as in (1), or by the single stochastic

kernel f(t,s) as in (2). It should be emphasized that both, the sequence of
deterministic kernels {fp} and the stochastic kernel f, depend not only on




the system 6 but also on the input Gaussian process X. .Thus distinct input
processes will always produce distinct stochastic kernels (unless of course
the system is linear) in representation (2), and will in general produce
distinct sequences of deterministic kernels in representation (1).

From now on we concentrate on the representation (1). Notice that ex-
pansion (1) looks very much like a Volterra kernel expansion, with the im-
portant difference that the multiple integrals are multiple Wiener rather
than Lebesgue integrals; it could thus be considered as a stochastic Volterra
kernel expansion. Several system synthesis or identification problems natu-
rally suggest themselves at this point:

(P1) Knowing the input and output processes X and Y, find the kernels
fp’ p=ly2, s

(P2) Knowing the kernels fp’ p=1,2,..., in the representation of the
system for the Gaussian input X, can one represent the output of
the system to another Gaussian input or to a deterministic input?

(P3) Assuming that the system 6 when acting on deterministic inputs
in, say, Lz[a,b] has a Volterra kernel expansion

©o
y(t) = ko(t) + pZILf'--fkp(t;tl,...,tp)x(tl)...x(tp)dtl...dtp (3)
where L denotes Lebesgue integral, y = 6(x) and kpeLz([a,b]p),

what is the relationship between the sets of kernels {fp}, and
{k _}?
P

In the following we consider problems (P1) and (P3), which are straightfor-
ward, and we begin an exploration of the seemingly harder problem (P2). The
analysis is based on the structure developed in [4].

We begin with problem (P1). Let {¢n} be any complete orthonormal set
in Az(R). Then we have for every teT (omitting the arguments tl""’tp)

~ ~

Py---P 8p &p
1 k 1~ =0 etk
£f (t) = a t 8...8 4
p® =lay o (8 4 N @
where the sum is taken over all k=1,...,p, Ppte.-*P =P, and nl,...,nk =
1,2,... and converges in AZ(OPR), and the coefficients are given by
Py Py &, . . &
l...p,!a t) = p! <f_(t 8...86¢ kK
By i S VO SR et e *n ), (@PR)

~
~

&, .« . O,
E{Jp(fp(t))Jp(¢n1 8...8 ¢“k )}

E{Ythl(f¢n1(s)xsds)...Hpn(f¢nk(s)xsds)} ¢ 18)

Hence from the input and output processes X and Y we can find the coeffi-
cients a from (5) and thus the kernels fp(t) from (4). Notice that the

A




functions ¢n(t) can be chosen by orthonormalizing (in AZ(R) of course) any
1

set of functions complete in LZ(T); or else by putting ¢n = A;

and {e,} are the eigenvalues and eigenfunctions of R(t,s) [1]. This method
of determining fp has of course all the usual disadvantages of a series ex-

’5 \ [ e
e where {An}

pansion. When T = (-®,+©), X is stationary and fp(t;tl,...,tp) = fp(tl—t,
...,tp-t), p=1,2,..., then a somewhat simpler method for approximating fp
can be found but we will not go into this here.

Problem (P2) is the most interesting as well as the most difficult one.
Of course, if one is willing to put strong assumptions on the system, like
those in problem (P3), then, as we shall see, the situation is fairly
straightforward. Thus the main point of problem (P2) is to investigate con-
ditions on the system, much weaker than those made in problem (P3), under
which appropriate positive answers to problem (P2) can be given. Here we
consider only the relationship of the representation of the system for the
Gaussian input X to its representation for a deterministic input which is a
sample function of X.

From (1) and (4) we have

Y, -E(x) = Ja.t)
t t 1P P
o Py i i
.} el [¢n '8...8_ k] :
p=1  k=1,...,p e TG S B K

Pyt PP
nl,...,nk=l,2,...

Then writing H_(&) = ZP_ c?gp, for a standard normal random variable £, we
have P o
30 TG 8 < H (6 ). (E.)
P ¢nl e ¢“k = by oo, ala's pk( n
P cpk b Lk
§i=0,-..,pi Jl Jk nl nk
YElciag

£ P 8,. . 8j
.1...c.ka--'[(¢n 15. .86 k)(tl,...,tj)xt ok
Ik 1 "k 1 j
dt o‘-dt. >
1 J

= ) c
ji=0,...,pi 1
iel,...,k

where j=jl+...+jk, and if we define
q+N P Py Py:--P
h:(t;tl,...,tq) i ) ) c.l...c.kan1 5
P=q k=l,...,p  Py*...*P =P If . g Mty
"1""'"k=1""’N 31+...+Jk=q

(t)

8. <
[¢n1 8.8, ](tl,...,tq)




we obtain by a simple rearrangement of terms

Y, - E(Y) = ] Llim Lf---[h (6581500t X, oon Xy dey...dey (6)

q=0 N-e 1 q

Since the convergence in (6) is in mean square, along some subsequence we
will have convergence with probability one. Thus we can write

Y, - E(Y,) = lim Z Lf-o-jh (it o Y A adt asiAT)
t t e q=0 1 q tl tq 1 q

5 Thus for almost every sample function of the process X, the output of the
: system can be represented by (7). Not1ce that the kernels hq in (7) can be

found from the kernels fp and that hq(t;tl,...,tp) are continuous furctions

in tl,...,tp if we choose (as we can) the functions ¢n(t) to be continuous.

Hence knowing the representation of the system output to a Gaussian input we
can find the representation of the system output for a certain class of

¢ deterministic inputs, namely almost all sample functions of the Gaussian

: process. This deterministic input-output representation, given by (7), de-
pends of course on the covariance R of the Gaussian process in the follow-
ing two ways:

(i) R determines the kernels hz of the representation (7), and

(ii) R determines, up to a zero probability set, the deterministic
functions for which representation (7) is valid.

R L TN A

ey e

Representation (7) has the following two remarkable features. First, even
though it is valid for a small class of deterministic inputs and its kernels
depend on that class, it was obtained under extremely weak assumptions on

N

the system, namely E(Y ) < o, Second it is identical in form to the repre-
sentation

N
N .n N
- 4 n B N
y(t) 11m{k0 (t) + qzlLf fkq (t,tl,...,tq)fctl)...x(tq)dtl...dtqis)

obtained by Fréchet (1910) for all x(t) in C[a,b] or in Lp[a,b] under the
assumption that the system is continuous, in the sense that for each fixed
y(t) is a continuous functional on C[a,b] or Lz[a,b]; in (8) the kernels

kz depend only on the system and not on the particular input x(t) in

o AT AR N

R—

C{a,b] or in Ly[a,b]. It is thus remarkable that a representat1on like (8),
valid not for all but only for some functions in L;[a,b] (or in C[a,b] if

X has continuous sample functions), was derived with no continuity assump-
tions on the system.

If, furthermore, it turns out that for eachq=1,2,..., the kernels

h:(t) converge in Lz([a,b]q) to hq(t) (which constitutes an additional re-
N

- E(Y,) = lim 2 L[---[h (t; Stpae oty )X, ...X dt ...dtq a.s. (9)

|
|
|
|
i
1
striction on the system) then (6) and thus (7) may be simplified to 1
mo q=0 s O™ |

|

|

|
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Finally, we should remark that if the system acting on the Gaussian
input X is of finite order P, in the sense that in (1) fp =0 for p > P,

P
¥, ~ EQL) = Z ]---]fp(t;tl,...,tp)xt X dtl...dtp X (10)
p=1 1 P
then it has the same order P when acting on the sample functions of X, in
the sense that (7) is written as

N,
Y, - E(Y,) = lim 2 f---fh (€57 MAETEL 0 | ol G TSR, i SO §
t t i map 1 ) IO tp 1 P

and if, furthermore, each hN(t) converges in Lz([a,b]p) to hp(t) we have

Y, - E(Y) = pzoj..-]h (t;t),. ..,tp)xtl...xtpdtl...dtp a.s. (12)

It may be checked (even though the calculations are somewhat messy) that in
the latter case we always have

hP = fP and hp_1 = fP_1

the assumption on the convergence of the h (t) s implying that the kernels
£,(t) belong to L,([a, b]P).

We finally consider problem (P3) which consists in finding the kernels
{k_} when the kernels {fp} are known, and vice versa. From (3) we have

o
Y, = ky(t) + pzlLI"'Ikp(t;tl"'"tp)xtl"'xtpdtl"°dtp a.s. (13)

On the other hand representation (1) implies (7) which in view of (13) can
be written as in (9). Now it follows from (9) and (13) that

ko(t) = E(Y,) + hy(t)
and for p=1,2,...

Lf...[kp(t;tl,...,tp)xtl...xtpdtl...dtp
= L]..-fhp(t;tl,...,tp)xtl...xtpdtl...dtp a.s. 14
If M§ is the subspace of Lz([a,b]p) generated by the symmetric functions
{xt W)...X, W), weQ-Qo} where QO is the exceptional set in (14), then (14)
1

P
is equivalent to >

h_(t) = Proj. _k _(t) .
p( ) J P p( )
X
Thus, in general, knowledge of the kernels {f_}, and thus the kernels {hp},
determines only the projections of the kernels kp onto Mﬁ. The kernels kp

will be determined from the kernels fp’ by kp = hp’ only if the subspaces

e e

s — I
it -




M§ consist of all symmetric'functions in Lz([a,b]p). An. equivalent condi-

tion is that if

Bt n o antessnh Canss JUETEXC e X s X )
Jo By ¢ p’1l P tl tp Sy sp

and R_ denotes also the integral type operator in LZ([a,b]p) with kernel

1
Rp, then Rp should be strictly positive definite, or the null space of Rﬁ
should be {0}. £
Conversely, knowledge of the kernels k, clearly determines the kernels

fp. This is quite obvious from (13). The precise relationship can be de-

rived by using the property

f---j’fp(t;tl,...,tp)xt Xy dtl...dtp = Proj Y

1 P t

(15)

o
s § Lfsxefi (ot oiist IPraj (X ...% Jat. ...dt
1 = 1
q=p ¥ e s “

where is the closure in LZ(X) of Qp’ the set of all polynomials in the

elements of H(X) with degree p which are orthogonal to all polynomials with
degree < p-1. The projections of (Xt ...Xt ) onto Q% can be expressed by

1 q
using the Grad-Barrett-Hermite polynomials (see Section II of Root (1965))

and then (15) will give each fp in terms of kp’ kp+2"' When only the
first P terms in (13) are present, the same will be true for (1) and in this

case fP can be expressed in terms of kp, fp_1 in terms of kP—l’ fP—z in

terms of kP-z and kp, fp_3 in terms of kp_3 and kP—l’ etc. Again we will
have in fact fp = kP and fP_1 = kP—l as shown in Root (1965), where the

specific expressions for P = 3 are also given.
ACKNOWLEDGMENT

This research was supported by the Air Force Office of Scientific
Research under Grant AFOSR-75-2796.

REFERENCES

1. Cambanis, S. (1973). Representation of stochastic processes of second 4
order and linear operations. J. Math. Anal. Appl. 41, 603-620. ‘

2. Cameron, R.H. and Martin, W.T. (1947). The orthogonal development of
nonlinear functionals in series of Fourier-Hermite functionals. Ann.
Math. 48, 385-392.

.

3. Fréchet, M. (1910). Sur les fontionnelles continues. Ann. Ec. Norm. 27,
193-216.

4. Huang, S.T. and Cambanis, S. (1976). Stochastic and multiple Wiener
integrals for Gaussian processes. Institute of Statistics Mimeo Series
No. 1087, University of North Carolina at Chapel Hill.

SE— T e —
.




Ito, K. (1944). Stochastic integral. Proc. Imp. Acad. Tokyo, 20,
519-524.

It5, K. (1951). Multiple Wiener integrals. J. Math. Soc. vapan, 13,
157-169.

Root, W.L. (1965). On system measurement and identification. Proceed-
ings, Symposium on Systems Theory, Polytechnic Institute of Brooklyn,
Polytechnic Press, New York, 1965.

Wiener, N. (1938). The homogeneous chaos. Amer. J. Math., 60, 897-936.

Wiener, N. (1958). Nonlinear Problems in Random Theory. Wiley, New York.

YWY WAV S




